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Abstract
It is shown that there are exact solutions of the free Maxwell equations (FME)
in vacuum allowing the existence of stable spherical formations of the free
magnetic field and ring-like formations of the free electric field. It is detected
that the form of these spheres and rings does not change with time in vacuum. It
is shown that these convergent solutions are the result of the interference of some
divergent solutions of the FME. One can surmise that these electromagnetic
formations correspond to Kapitsa’s hypothesis about interference origin and
the structure of a fireball.

PACS numbers: 03.50.−z, 03.50.De

1. Introduction

It is the generally accepted opinion that solutions of the free Maxwell equations (FME) are
well studied and do not boil down to any surprises. Nevertheless, we will show in the next
sections that such mathematically well-known solutions (see, e.g., [1], where general solutions
of the Maxwell equations were obtained) lead, however, to the existence of rather unusual and
unexpected electromagnetic formations in vacuum such as closed spherical magnetic surfaces
(without an electric field on these surfaces and where the magnetic field is tangential and its
intensity depends on time) and ring-like formations of the electric field (without a magnetic
field at all points of the ring and where the electric field is tangential and depends on time).
We will also show that these formations do not change their form with time in vacuum.

2. An unusual solution of the free Maxwell equations

We found that a certain class of exact solutions of the FME

div E = 0 (1)
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rot E = −1

c

∂B
∂t

(2)

div B = 0 (3)

rot B = 1

c

∂E
∂t

(4)

exists which has some unexpected characteristics. The present work is devoted to the research
of such solutions.

We shall look for solutions of the system FME as follows:

E(r, t) = e(r)ψ(t) and B(r, t) = b(r)χ(t) (5)

where ψ(t) and χ(t) are some functions of time, vector e is a polar vector and b is an axial
one.

And so substituting (5) into the FME we obtain

div e = 0 (6)

rot e = −1

c

χ ′

ψ
b (7)

div b = 0 (8)

rot b = 1

c

ψ ′

χ
e. (9)

It is obvious that these equations are consistent if and only if

−χ
′

ψ
= �1 and

ψ ′

χ
= �2 (10)

where a prime indicates a derivative with respect to time, �1 and �2 are arbitrary constants.
In order to obtain solutions of this system with three constants only, and to obtain

sinusoidal solutions, we propose that�1 = �2 = �. Thus, the general solution of the system
(10) is

χ(t) = A cos(�t − η) and ψ(t) = A sin(�t − η) (11)

where A and η are arbitrary constants, and equations for e and b become

∇ × e = �

c
b and ∇ × b = �

c
e. (12)

In order to solve this system, let us first note that formally summing two equations (12)
we obtain

∇ × (e + b) = �

c
(e + b) or ∇ × a = �

c
a. (13)

So, first we resolve equation (13) with respect to a, and then we obtain from the vector a
(which, obviously, has no polarity) the polar vector e and the axial vector b. Actually, one can
express the polar and axial parts of any vector without polarity, in general, as follows:

e(r) = 1
2 [a(r)− a(−r)] (14)

and

b(r) = 1
2 [a(r) + a(−r)]. (15)
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Now, if we calculate a rotor of both parts of equations (14), (15) we can be satisfied that the
system (12) is fulfilled:

∇ × e(r) = 1

2
[∇ × a(r)− ∇ × a(−r)] = 1

2

[
�

c
a(r) +

�

c
a(−r)

]
= �

c
b(r) (16)

and

∇ × b(r) = 1

2
[∇ × a(r) + ∇ × a(−r)] = 1

2

[
�

c
a(r)− �

c
a(−r)

]
= �

c
e(r). (17)

Here, we take into account that after inverting the coordinates, the equation∇×a(r) = �
c
a(r)

becomes −∇ × a(−r) = �
c
a(−r). Thus, one can see that if we find a as a solution of

equation (13) it means that we find e and b as solutions of the system (12).
Equation (13) has already been solved in the literature (see, e.g., [2, 3]).
And so, the solution of equation (13) in the spherical system of coordinates is1

a = D
{

2α

r3
cos θ

}
er + D

{ γ
r3

sin θ
}

eθ + D
{
�α

cr2
sin θ

}
eϕ. (18)

Finally, separating vectors e and b we obtain the solution of the system (12) expressed by
components (Cartesian and spherical ones):

e = D
{
−α�y
cr3

,
α�x

cr3
, 0

}
= �α sin θ

cr2
Deϕ (19)

and

b = D
{
βxz

r5
,

βyz

r5
,

2α

r3
− β(x

2 + y2)

r5

}
= 2α cos θ

r3
Der +

γ sin θ

r3
Deθ (20)

where

α = cos

(
�r

c
− δ

)
+
�r

c
sin

(
�r

c
− δ

)

β = 3α − �
2r2

c2
cos

(
�r

c
− δ

)
and γ = β − 2α.

Let us now write the solution (5) in explicit form, taking into account equations (11), (19)
and (20):

E =
[
�α sin θ

cr2
Deϕ

]
sin(�t − η) (21)

and

B =
[

2α cos θ

r3
Der +

γ sin θ

r3
Deθ

]
cos(�t − η) (22)

where δ and η are arbitrary constants.
It follows from solutions (21), (22) that the necessary (not sufficient!) condition in order

for these solutions to not diverge in r = 0 is

α(0) =
{

cos

(
�r

c
− δ

)
+
�r

c
sin

(
�r

c
− δ

)}∣∣∣∣
r=0

= 0 �⇒ cos δ = 0 �⇒

δ =
(
n +

1

2

)
π where n = 0,±1,±2, . . . .

1 D is a dimensional constant [D] = M1/2L5/2T−1.
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In order to satisfy oneself that the solutions (21), (22) converge, one can calculate the
following limits2 for δ = π

2 :

lim
r→0

α

r2
= 0 lim

r→0

α

r3
= �3

3c3
lim
r→0

γ

r3
= −2�3

3c3
(23)

and the corresponding limits for E,B and the energy density w = E2+B2

8π are

lim
r→0

E = 0 lim
r→0

B = 2D�3 cos(�t)

3c3
k lim

r→0
w = D2�6

18πc6
cos2(�t) (24)

where k is the z-coordinate of the Cartesian system.
The constant η just defines an initial wave phase of the fields E and B. So, without loss

of generality, we can just write one non-divergent solution for δ = π
2 , η = 0 as

E = D
[
α� sin θ

cr2
eϕ

]
sin(�t) B = D

[
2α cos θ

r3
er +

γ sin θ

r3
eθ

]
cos(�t) (25)

where

α = −�r
c

cos

(
�r

c

)
+ sin

(
�r

c

)
and γ = α − �

2r2

c2
sin

(
�r

c

)
. (26)

Note that the solution (25) can be found directly from the general solution of the Maxwell
equations obtained by Mie [1].

Generally speaking, taking into account (19) and (20) one can see that an infinity of
divergent solutions for E and B exist as well as convergent ones. Curious enough, but the
convergency of these solutions is defined by the constant δ. Solutions converge in r = 0 if
and only if

δ = (
n + 1

2

)
π where n = 0,±1,±2, . . . . (27)

We show that the convergent solution (25)3 is represented as an interference of divergent
ones.

After simple algebraic transformation one can represent the solution (25) as a
superposition of two waves spreading in opposite directions at every point:

Ec = E(→) + E(←) and Bc = B(→) + B(←) (28)

where

E(→) = � sin θ

2cr2

[
cos

(
�r

c
−�t

)
+
�r

c
sin

(
�r

c
−�t

)]
Deϕ (29)

E(←) = −� sin θ

2cr2

[
cos

(
�r

c
+�t

)
+
�r

c
sin

(
�r

c
+�t

)]
Deϕ (30)

B(→) = cos θ

r3

[
sin

(
�r

c
−�t

)
− �r

c
cos

(
�r

c
−�t

)]
Der

+
sin θ

2r3

[
−�r
c

cos

(
�r

c
−�t

)
+

(
1− �

2r2

c2

)
sin

(
�r

c
−�t

)]
Deθ (31)

2 We calculate these limits expanding α and γ in series of powers of r.
3 We designate it by Ec and Bc in this section.
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B(→) = cos θ

r3

[
sin

(
�r

c
+�t

)
− �r

c
cos

(
�r

c
+�t

)]
Der

+
sin θ

2r3

[
−�r
c

cos

(
�r

c
+�t

)
+

(
1− �

2r2

c2

)
sin

(
�r

c
+�t

)]
Deθ . (32)

Labourless calculation also shows that

E(→) = 1
2 (−Ed + Ec) E(←) = 1

2 (Ed + Ec) (33)

and

B(→) = 1
2 (−Bd + Bc) B(←) = 1

2 (Bd + Bc) (34)

where Ed ,Bd are divergent solutions of the system (1)–(4):

Ed = D
[
αd� sin θ

cr2
eϕ

]
cos(�t) Bd = D

[
2αd cos θ

r3
er +

γd sin θ

r3
eθ

]
sin(�t) (35)

and

αd = cos

(
�r

c

)
+
�r

c
sin

(
�r

c

)
and γd = α − �

2r2

c2
sin

(
�r

c

)
.

It is obvious that the functions E(→),E(←),B(→),B(←) diverge in r = 0 and they are also
solutions of the FME.

3. Stable electromagnetic spheres and rings in vacuum as a consequence of the
solution (25)

As we will show below, the solution (25) of the FME leads to the existence of unusual spherical
formations of the free electromagnetic field.

3.1. Some details of the energy distribution in the field (25)

Let us write, after some transformations, the expression for the energy density for the solution
(25). One can show that the energy density contains both time-independent and time-dependent
parts:

w = E2 + B2

8π
= D2

16π

{
�2α2

c2r4
sin2 θ +

[
4α2

r6
cos2 θ +

γ 2

r6
sin2 θ

]}

+
D2

16π

{[
4α2

r6
cos2 θ +

γ 2

r6
sin2 θ

]
− �

2α2

c2r4
sin2 θ

}
cos(2�t). (36)

Let us find from (36) the locus where w does not depend on t. It is obvious that the loci
are

(1) along the axis Z at the points where tan
(
�z
c

) = �z
c
(θ = 0, π; α = 0);

(2) at surfaces where r satisfies the equation γ 2 = α2
(
�2r2

c2 − 4 cot2 θ
)

. One can see the

cross-section of these surfaces in figure 3 (discontinuous curves)4

Now we calculate the electromagnetic energy E within a sphere of radius R with the centre
at the coordinate origin:

E⊕ =
∫ R

0
dr

∫ π

0
dθ

∫ 2π

0
dϕ r2 sin θ w(r, θ, ϕ, t) = E(R) + E(R, t) (37)

4 All figures in this work were performed in the program ‘Mathematica-4.0’.
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where

E(R) = D2

6R3

[
�4R4

c4
− �

2R2

c2
sin2

(
�R

c

)
− α2

]
(38)

E(R, t) = − D2

6R3
αγ cos(2�t). (39)

Here α = −�R
c

cos
(
�R
c

)
+ sin

(
�R
c

)
and γ = α − �2R2

c2 cos
(
�R
c

)
.

One can show from equation (39) that electromagnetic energy within spheres of radii R
which are solutions of the equations5

tan

(
�R

c

)
= �R

c
(40)

or

tan

(
�R

c

)
=

�R
c

1− �2R2

c2

(41)

does not change with time.
Note that every root of equation (40) is placed at the number line between two neighbouring

roots of equation (41) and vice versa. One can show that the distance between these
neighbouring spherical surfaces tends to cπ

2� when R → ∞. Let us also draw attention
to an interesting fact that at the surfaces of the spheres of radius (40) only the magnetic field
is present, and the electric field at these surfaces does not exist. It follows directly from
equation (25) for α = 0.

3.2. Analysis of the Poynting vector’s field corresponding to the wave field (25)

The Poynting vector corresponding to the wave field (25) is

S = c

4π
E× B = D2

8π

[
�α2 sin(2θ)

r5
eθ − �αγ sin2 θ

r5
er

]
sin(2�t). (42)

Let us calculate the total momentum and the angular momentum of the electromagnetic
field (25) within a sphere of arbitrary radius r with the centre in the coordinate origin. Because
the Poynting vector is proportional to the vector of the density of momentum at the same point,
we can just calculate the integral of the Poynting vector over the volume of the sphere.

It is easy to calculate this integral if we express spherical system coordinates by Cartesian
system coordinates:

er = i sin θ cosϕ + j sin θ sin ϕ + k cos θ

and

eθ = i cos θ cosϕ + j cos θ sin ϕ − k sin θ.

Thus, integrating (42) over the volume of the sphere we obtain∫ ∫ ∫
Sr2 sin θ dr dθ dϕ = −D24π� sin(2�t)

32π
k

∫
α2

r3
sin4 θ

∣∣∣∣
π

0
dr = 0. (43)

It means that the total momentum of the electromagnetic field (25) in a volume bounded
by an arbitrary sphere with a centre at the coordinate origin is zero at any time. Analogously,
one can show that the total angular momentum of this field configuration is zero.
5 It follows from α = 0 and γ = 0 respectively.
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Let us now find the loci where the Poynting vector is zero at any instant of time. It follows
from equation (42) that the conditions when the Poynting vector is zero are

α2 sin(2θ) = 0 and αγ sin2 θ = 0. (44)

From the first equation of conditions (44) we have the following possibilities:
(i) α = 0. This automatically satisfies both conditions (44). From α = 0 we obtain the

equation

tan

(
�r

c

)
= �r

c
. (45)

Hence, the loci for case (i) are spheres whose radii satisfy equation (45).
(ii) sin(2θ) = 0. This means that θ can be 0, π2 or π .
(ii-1) If θ is 0 or π , in this case both equations fulfil the conditions (44). So the locus is

the Z axis.
(ii-2) If θ = π

2 , this gives us two possibilities in order to satisfy the conditions (44): either
α = 0 (this is case (i), see above) or γ = 0. From the last we have

tan

(
�r

c

)
=

�r
c

1− �2r2

c2

. (46)

So the loci corresponding to the case θ = π
2 , and γ = 0 are rings in the plane XY with radii

satisfying equation (46). Note that at all points of these rings the magnetic field is zero.
Now we consider spheres whose equators are the mentioned rings. These spheres are

defined by the condition γ = 0. One can see from equation (42) that at these surfaces the
Poynting vector at all points has tangential components only. Due to this fact the conservation
of the energy within spheres of radii (41) becomes clearer.

Thus, the adjusted total in looking for the loci where the Poynting vector for the field (25)
is zero at any instant of time is

Locus 1: Axis Z. We call this axis the magnetic axis because an electric field does not
exist there.
Locus 2: Rings in the plane z = 0 with radii satisfying equation (46). We call these
rings electric rings because a magnetic field does not exist there.
Locus 3: Spheres with centres at the origin with radii satisfying equation (45). We call
these spheres magnetic spheres because an electric field does not exist on them.

In order to elucidate the results of the last analysis better, let us adduce the graphic (figure 1)
where the distribution of the Poynting vector field is shown.

We consider this distribution, for example, in the plane x = 0 (because of the axial
symmetry of the energy density and energy-flux density distribution it is sufficient to consider
this cross-section only).

We call spheres whose equator is the electric ring E-spheres. We call the magnetic spheres
M-spheres. In figure 1, one can see the vertical magnetic axis (coinciding with the Z-axis), the
first E-sphere, the first M-sphere and the second E-sphere at a given instant of time. Within
E-spheres the total electromagnetic energy is conserved because the energy-flux vector at the
surface of this sphere has a tangential component only. The energy transfers along this surface
from pole to equator (electric ring) and after a certain period6 of time reverses movement.
Within the first E-sphere the energy transfers from the magnetic axis to the electric ring and
after a certain time returns.

6 This period is defined by the function sin(2�t) from equation (42).
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Figure 1. Poynting’s vector field distribution for a given instant of time in the plane x = 0, the
Y -axis is the abscissa and the Z-axis is the ordinate. Here c = 1, ω = 1.

The Poynting vector is zero at every point of the first M-sphere, so the energy within
this sphere is conserved too. One can see that the energy transfers from the surface of the
first magnetic sphere to the electric rings of the first and the second E-spheres. An analogous
exchange of the energy takes place between the next E- and M-spheres.

We once more emphasize that the Poynting vector field takes opposite directions with
time, due to the existence of the function sin(2�t) in equation (42).

As a further demonstration we adduce here the graphic (figure 2) of the cross-section of
the Poynting vector field in the plane z = 0.

Finally, we adduce here the common graphic (figure 3) of the cross-section (x = 0) of
the surfaces where the energy density is constant and the first M-sphere, first and second
E-spheres.

We emphasize that these surfaces do not deform, do not displace and do not rotate with
time in vacuum.



Unusual formations of the free electromagnetic field in vacuum 8051
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Figure 2. The Poynting vector field distribution for a given instant of time in the plane z = 0, the
X-axis is the abscissa and the Y-axis is the ordinate.

4. Discussion

Thus, we obtained a stationary free electromagnetic field which can be consequence of some
interference processes. Why can one speak here about interference? Actually, we see that
in this electromagnetic formation, surfaces (discontinuous curves in figure 3) and points (on
the Z-axis) where the energy density is constant exist. From this one can surmise that these
surfaces and points are nodes of waves. It is also well known that standing electromagnetic
waves are a result of interference processes.

Of course, the solution of the free Maxwell equations corresponding to these ball-like
electromagnetic formations was obtained for vacuum. However, if we recall that in air, the
values ε = 1, µ = 1, we can be practically sure that the solution (25) is valid for air, taking
into account that air does not have free charges and currents. So it is easy to draw an analogy
between our solution and Kapitsa’s hypothesis about the interference nature of ball lightning
[4]. Actually, the electric field of electromagnetic waves which ‘voyage’ within M-spheres
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Figure 3. Cross-section of the surfaces of the constant energy density and first M-sphere and first
E-spheres in the plane x = 0, the Y -axis is the abscissa and the Z-axis is the ordinate. Here
c = 1, ω = 1.

and especially the electric field of the aforementioned electric rings have to ionize the air
converting it to plasma. The size of the critical region of ionization is defined by the radius of
the magnetic sphere, in which the density energy is still adequate for ionizing air. This ultimate
magnetic sphere in turn plays the role of a magnetic trap for plasma confinement. One can
indeed see from equation (36) that the energy density within the magnetic spheres decreases
as 1

r2 . It means that at a certain distance the energy density is less than the critical value which
is necessary to ionize the air. This condition has to define the radius of the ultimate magnetic
sphere within which conditions of ionization still exist. Taking into account this limited value
of the radius of this ultimate magnetic sphere one can speak about fireballs.

It goes without saying that it is just our hypothesis, but there is undoubtedly an analogy
between Kapitsa’s idea and our ball-like solutions. It should also be stated that other ball-like
stable formations in the radiation field were obtained in the paper ‘Is there yet an explanation
of ball lightning?’ by Arnhoff [5] and in the paper ‘Ball lightning as a force-free magnetic
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knot’ by Rañada et al [6] (see also [7]). It follows from these works that the electromagnetic
energy contained in a spherical volume cannot escape (the energy corresponding to our
solutions behaves in the same way). According to [5], outside this volume there is only an
quasi-electrostatic field, rotating with constant angular velocity about the axis (at this point
our and Arnhoff’s solutions are different). In turn Rañada et al [6, 7] proposed ball-like
electromagnetic formations as a solution based on the idea of the ‘electromagnetic knot’, an
electromagnetic field in which any pair of magnetic lines or any pair of electric lines form a
link—a pair of linked curves.

Thus the famous hypothesis of the Nobel prizewinner Kapitsa that fireballs (or ball
lightning) are standing electromagnetic waves of unusual configuration as a result of some
interference process from the day of its formulation (in 1955) has never (to the present
day) received theoretical (mathematical) support. One can see that our work gives the first
theoretical support to this hypothesis.

In a subsequent work we are going to research the process of the genesis of these unusual
electromagnetic formations.

And in conclusion we just note that Barut was right when he claimed that ‘electrodynamics
and the classical theory of fields remain very much alive and continue to be the source of
inspiration for much of the modern research work in new physical theories’ [8].
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